3.3.4 \(\int \frac {1}{\sqrt {a+b \sec (e+f x)} (c+d \sec (e+f x))} \, dx\) [204]

Optimal. Leaf size=216 \[ -\frac {2 \sqrt {a+b} \cot (e+f x) \Pi \left (\frac {a+b}{a};\text {ArcSin}\left (\frac {\sqrt {a+b \sec (e+f x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (e+f x))}{a+b}} \sqrt {-\frac {b (1+\sec (e+f x))}{a-b}}}{a c f}-\frac {2 d \Pi \left (\frac {2 d}{c+d};\text {ArcSin}\left (\frac {\sqrt {1-\sec (e+f x)}}{\sqrt {2}}\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sec (e+f x)}{a+b}} \tan (e+f x)}{c (c+d) f \sqrt {a+b \sec (e+f x)} \sqrt {-\tan ^2(e+f x)}} \]

[Out]

-2*cot(f*x+e)*EllipticPi((a+b*sec(f*x+e))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec
(f*x+e))/(a+b))^(1/2)*(-b*(1+sec(f*x+e))/(a-b))^(1/2)/a/c/f-2*d*EllipticPi(1/2*(1-sec(f*x+e))^(1/2)*2^(1/2),2*
d/(c+d),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sec(f*x+e))/(a+b))^(1/2)*tan(f*x+e)/c/(c+d)/f/(a+b*sec(f*x+e))^(1/2)/(-
tan(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 216, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {4015, 3869, 4058} \begin {gather*} -\frac {2 d \tan (e+f x) \sqrt {\frac {a+b \sec (e+f x)}{a+b}} \Pi \left (\frac {2 d}{c+d};\text {ArcSin}\left (\frac {\sqrt {1-\sec (e+f x)}}{\sqrt {2}}\right )|\frac {2 b}{a+b}\right )}{c f (c+d) \sqrt {-\tan ^2(e+f x)} \sqrt {a+b \sec (e+f x)}}-\frac {2 \sqrt {a+b} \cot (e+f x) \sqrt {\frac {b (1-\sec (e+f x))}{a+b}} \sqrt {-\frac {b (\sec (e+f x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\text {ArcSin}\left (\frac {\sqrt {a+b \sec (e+f x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a c f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*Sec[e + f*x]]*(c + d*Sec[e + f*x])),x]

[Out]

(-2*Sqrt[a + b]*Cot[e + f*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[e + f*x]]/Sqrt[a + b]], (a + b)/(a -
b)]*Sqrt[(b*(1 - Sec[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[e + f*x]))/(a - b))])/(a*c*f) - (2*d*EllipticPi[(2
*d)/(c + d), ArcSin[Sqrt[1 - Sec[e + f*x]]/Sqrt[2]], (2*b)/(a + b)]*Sqrt[(a + b*Sec[e + f*x])/(a + b)]*Tan[e +
 f*x])/(c*(c + d)*f*Sqrt[a + b*Sec[e + f*x]]*Sqrt[-Tan[e + f*x]^2])

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 4015

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))), x_Symbol] :> Dist[1
/c, Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[d/c, Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e
 + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4058

Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
), x_Symbol] :> Simp[-2*(Cot[e + f*x]/(f*(c + d)*Sqrt[a + b*Csc[e + f*x]]*Sqrt[-Cot[e + f*x]^2]))*Sqrt[(a + b*
Csc[e + f*x])/(a + b)]*EllipticPi[2*(d/(c + d)), ArcSin[Sqrt[1 - Csc[e + f*x]]/Sqrt[2]], 2*(b/(a + b))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b \sec (e+f x)} (c+d \sec (e+f x))} \, dx &=\frac {\int \frac {1}{\sqrt {a+b \sec (e+f x)}} \, dx}{c}-\frac {d \int \frac {\sec (e+f x)}{\sqrt {a+b \sec (e+f x)} (c+d \sec (e+f x))} \, dx}{c}\\ &=-\frac {2 \sqrt {a+b} \cot (e+f x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (e+f x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (e+f x))}{a+b}} \sqrt {-\frac {b (1+\sec (e+f x))}{a-b}}}{a c f}-\frac {2 d \Pi \left (\frac {2 d}{c+d};\sin ^{-1}\left (\frac {\sqrt {1-\sec (e+f x)}}{\sqrt {2}}\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sec (e+f x)}{a+b}} \tan (e+f x)}{c (c+d) f \sqrt {a+b \sec (e+f x)} \sqrt {-\tan ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 27.70, size = 251, normalized size = 1.16 \begin {gather*} -\frac {2 \sqrt {\frac {b+a \cos (e+f x)}{(a+b) (1+\cos (e+f x))}} (d+c \cos (e+f x)) \left (c (c+d) F\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (e+f x)\right )\right )|\frac {a-b}{a+b}\right )-2 \left (\left (c^2-d^2\right ) \Pi \left (-1;\text {ArcSin}\left (\tan \left (\frac {1}{2} (e+f x)\right )\right )|\frac {a-b}{a+b}\right )+d^2 \Pi \left (\frac {c-d}{c+d};\text {ArcSin}\left (\tan \left (\frac {1}{2} (e+f x)\right )\right )|\frac {a-b}{a+b}\right )\right )\right ) \sqrt {\cos (e+f x) \sec ^2\left (\frac {1}{2} (e+f x)\right )} \sec ^{\frac {3}{2}}(e+f x) \sqrt {1+\sec (e+f x)}}{c (c-d) (c+d) f \sqrt {\sec ^2\left (\frac {1}{2} (e+f x)\right )} \sqrt {a+b \sec (e+f x)} (c+d \sec (e+f x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*Sec[e + f*x]]*(c + d*Sec[e + f*x])),x]

[Out]

(-2*Sqrt[(b + a*Cos[e + f*x])/((a + b)*(1 + Cos[e + f*x]))]*(d + c*Cos[e + f*x])*(c*(c + d)*EllipticF[ArcSin[T
an[(e + f*x)/2]], (a - b)/(a + b)] - 2*((c^2 - d^2)*EllipticPi[-1, ArcSin[Tan[(e + f*x)/2]], (a - b)/(a + b)]
+ d^2*EllipticPi[(c - d)/(c + d), ArcSin[Tan[(e + f*x)/2]], (a - b)/(a + b)]))*Sqrt[Cos[e + f*x]*Sec[(e + f*x)
/2]^2]*Sec[e + f*x]^(3/2)*Sqrt[1 + Sec[e + f*x]])/(c*(c - d)*(c + d)*f*Sqrt[Sec[(e + f*x)/2]^2]*Sqrt[a + b*Sec
[e + f*x]]*(c + d*Sec[e + f*x]))

________________________________________________________________________________________

Maple [A]
time = 3.18, size = 318, normalized size = 1.47

method result size
default \(-\frac {2 \sqrt {\frac {a \cos \left (f x +e \right )+b}{\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {a \cos \left (f x +e \right )+b}{\left (\cos \left (f x +e \right )+1\right ) \left (a +b \right )}}\, \left (\cos \left (f x +e \right )+1\right )^{2} \left (-1+\cos \left (f x +e \right )\right ) \left (c^{2} \EllipticF \left (\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}, \sqrt {\frac {a -b}{a +b}}\right )+d \EllipticF \left (\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}, \sqrt {\frac {a -b}{a +b}}\right ) c -2 c^{2} \EllipticPi \left (\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}, -1, \sqrt {\frac {a -b}{a +b}}\right )+2 \EllipticPi \left (\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}, -1, \sqrt {\frac {a -b}{a +b}}\right ) d^{2}-2 \EllipticPi \left (\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}, \frac {c -d}{c +d}, \sqrt {\frac {a -b}{a +b}}\right ) d^{2}\right )}{f \left (a \cos \left (f x +e \right )+b \right ) \sin \left (f x +e \right )^{2} c \left (c +d \right ) \left (c -d \right )}\) \(318\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/f*((a*cos(f*x+e)+b)/cos(f*x+e))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*((a*cos(f*x+e)+b)/(cos(f*x+e)+1)/(a
+b))^(1/2)*(cos(f*x+e)+1)^2*(-1+cos(f*x+e))*(c^2*EllipticF((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(1/2))+d*E
llipticF((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(1/2))*c-2*c^2*EllipticPi((-1+cos(f*x+e))/sin(f*x+e),-1,((a-
b)/(a+b))^(1/2))+2*EllipticPi((-1+cos(f*x+e))/sin(f*x+e),-1,((a-b)/(a+b))^(1/2))*d^2-2*EllipticPi((-1+cos(f*x+
e))/sin(f*x+e),(c-d)/(c+d),((a-b)/(a+b))^(1/2))*d^2)/(a*cos(f*x+e)+b)/sin(f*x+e)^2/c/(c+d)/(c-d)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*sec(f*x + e) + a)*(d*sec(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a + b \sec {\left (e + f x \right )}} \left (c + d \sec {\left (e + f x \right )}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*sec(e + f*x))*(c + d*sec(e + f*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*sec(f*x + e) + a)*(d*sec(f*x + e) + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{\sqrt {a+\frac {b}{\cos \left (e+f\,x\right )}}\,\left (c+\frac {d}{\cos \left (e+f\,x\right )}\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b/cos(e + f*x))^(1/2)*(c + d/cos(e + f*x))),x)

[Out]

int(1/((a + b/cos(e + f*x))^(1/2)*(c + d/cos(e + f*x))), x)

________________________________________________________________________________________